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"
Why do we need multivariable
analysis?

“Treatment (control) “ for the
confounding effects at analytical level

Stratification by confounder(s)
Multivariable / multiple analysis

Prediction of individual risk
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Regression models for multivariable analysis

No Continuous Linear regression model
Binomial Logistic regression model
Categorical (23) Multinomial (polytomous)

logistic regression model
Binomial (event) Cox proportional hazard
with censoring model

Yes Continuous Mixed effect model,

Generalized estimating
equation

Categorical (23) Generalized estimating
equation




LINEAR REGRESSION ANALYSIS
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Lung cancer mortality by daily cigarettes smoked

Y-intercept =(1.6) Slope =(11.26
pt=(1.6) Slope =({1.26)

Lung Cancer Mortality
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Original data: Doll and Hill Br Med J 1956



Height explaining mathematical ability!!??

Source | SS df MS Number of obs = 32
------------- o e F(1, 30) = 726.87
Model | 412.7743 1 412.774322 Prob > F = 0.0000
Residual | 17.0365 30 .567882354 R-squared = 0.9604
------------- B Adj R-squared = 0.9590
Total | 429.8108 31 13.8648643 Root MSE = .75358
Ability score of maths
ama| Coef. Std. Err. P>[t|] [95% Conf. Interval]
_____________ F e —————— ——————————————

height | .4118029 .0152743 26.96 0.000 .3806086 .4429973
_cons | -42.82525 2.191352 -19.54 0.000 -47.30059 -38.34992



Association between height and score of maths
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Both height and ability of maths increase with age
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How age itself influences the association
between height and the ability of maths?

Let's see the equation
Ability of maths (AM) = o + B1(Height)
— AM = -42.8 + 0.41(Height)

AM = a + B1(Height) + B2(Age)
— AM = 1.48 - 0.01(Height) + 2.02 (Age)
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Significant association between height

and the ability of maths was gone after
adjusting for the effect of age

Source | SS df MS Number of obs = 32
------------- B et F(2, 29) = 851.23
Model | 422.6119 2 211.305972 Prob > F = 0.0000
Residual | 7.19885 29 .248236138 R-squared = 0.9833
------------- B e Adj R-squared = 0.9821
Total | 429.81079 31 13.8648643 Root MSE = .49823
ama|  Coef. Std. Err. P>[t|] [95% Conf. Interval]
_____________ o e e e e e e e e 1 e e et e et e et e et e et e et e et e et e e et et e et e et e e e e e e e e e e e

height | -.0121303 .0680948 -0.18 0.860 -.1513998 .1271393
age | 2.02461 3216095 6.30 0.000 1.366845 2.682375
_cons| 1.483038 7.185946 0.21 0.838 -13.21387 16.17995
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No association between height and age-adjusted
score of maths
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Interpretation of coefficients

Let's see the equation
Ability of maths (AM) = o + B1(Height)
— AM = -42.8 + 0.41(Height)
0.41 points increase by 1cm increase of height
AM = o + B1(Height) + B2(Age)
— AM = 1.48 - 0.01(Height) + 2.02 (Age)

0.01 points decrease by 1cm increase of height

Confounding effect: magnitude and direction of the association



ANOVA table
Sum of Degrees Mean sum of F statistic
Squares of freedom | squares (SS/df) (dfm, dfr)
P value of F test
Source | SS df MS Number ¢ obs = 32
------------- oo F(2, 29) = 851.23
Model | 422.6119 2 211.305972 Prob > F = 0.0000
Residual | 7.19885 29 .248236138 R-squared = 0.9833
------------- e e Adj R-squared = 0.9821
Total | 429.81079 31 13.8648643 Root MSE = .49823
t = Coef. / SE P value (H,: coef.=0)
ama|  Coef. Std. Err. P>[t|] [95% Conf. Intervall
_____________ e C] Of CoEf.
height | -.0121303 .0680948 -0.18 0.860 -.1513998 .1271393
age | 2.02461 3216095 6.30 0.000 1.366845 2.682375
_cons| 1.483038 7.185946 0.21 0.838 -13.21387 16.17995
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Interpretation of coefficients in general

To simplify, the explanatory variable is
binomial one: 1=exposed or 0=unexposed

Exposed: Ye =a + B(Exp=1)=a +
Unexposed: Yu = o + B(Exp=0) = o
Difference: Ye — Yu =3

m Coefficient estimate: difference in
dependent value



"
Interpretation of coefficients after
log-transformation of dependent variable

The explanatory variable is binomial one:
1=exposed or 0=unexposed

Exposed: In (Ye)=o + B(Exp=1)=a +
Unexposed: In (Yu) = a + B(Exp=0) = a
Difference: In(Ye) —In (Yu) = B

Ratio: Ye/Yu=¢ePB

m Coefficient estimate: ratio of dependent
value (after exponentiating)



"
Control of confounding with
regression model

m Compared to stratified analysis, several
confounding variables can be easily ;7

CHC
controlled simultaneously using a @@
multivariable regression model.

m Results from the regression model are
readily susceptible to bias if the model
IS not a good fit to the data. @@




@ Exposed group

15.0 1
12.5 -
ll’10.0 - T _ _
L oot size Age is a confounding
S factor, but
O unfortunately, the age
distribution is not
overlapped.

O
Stratified analysis

Figure 12-4 Hypothetical example of a multivariable linear reg; would pI’Oduce no
data involving a dichotomous exposure variable (exposed = solid | estimate of effect

open circles) and age.

Epidemiology (Rothman KJ, Oxford University Press)



@ Exposed group

15.0 -
12.5 1
10.0
e Although the age
375 - o0 | distribution is not
a nexposed Jrotp overlapped, a regression
8.0 47— © model will fit two parallel
straight lines through the
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Epidemiology (Rothman KJ, Oxford University Press)



CORRELATION = REGRESSION ANALYSIS?



Correlation coefficient

m Strength of the correlation between two
continuous variables ranging from -1 to 1

0 Correla_tion IS a linear association between
two variables

m NOT to prove the causal association; x and
y variable are interchangeable.
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Examples of correlation

r=1 r=-1
_— 100 -
=
0 g 80 oy
L]
! 60 | .
60 -J > "L,
a0 F | 40 .
-
o0 [ P 20 v e
N
0
’ 0 50 100
0 50 100
X
X

Positively correlated Negatively correlated



100
80
60 |
40

20

What does “r=0" mean?
" e "

m No linear association between x and y

50 100

18

16 |
14 1
12 |
10 |

o N B~
T T

10



" I
Correlation coefficient is not the
magnitude of “slope”
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Correlation coefficients

m Pearson’s CC (r): parametric method

At least, one of the two variables should
follow the normal distribution.

m Non-parametric methods

Spearman’s CC (p)
Kendall's CC (1)



r (correlation coefficient) and R-squared
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R squared, coefficient of

determination, is the proportion of

the variance in the dependent

variable that is predictable from the

independent variable(s).

r=0.4481
0.4481 x 0.4481="
Humber of obs = 729
F{l, 757} = 190.24
Prob > F = 0.0000
E-=sgquared = 0.2008
Ad] B-sguared = 0.1598
Root MSE = 5.4705
R2 = r2

" _ M 2

2 (i — fi)

R2 = 1-

2i(yi —y)?



Weight

W =-40 + 0.6084xH
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r (correlation coefficient) and R-squared
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Better to use when you have more
variables or small sample size

The R? coefficient of determination, ranging 0-1, is a statistical
measure of how well the regression predictions approximate
the real data points.



r (correlation coefficient) and regression coefficient
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ADJUSTMENT OF CORRELATION
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Calculation skill and physical development

24.8 134

25.6 136 _

15.9 117 Is weight related
16.1 124 to calculation
28.9 135

31.8 135 <
22.3 137 ®(®
18.9 131

15 100



"
Estimation of age-adjusted
correlation coefficient
m Correlation coefficient between weight and
calculation skill was 0.79.

m Age is related to both variables, weight
and calculation skill : age is a confounder.

&

partial correlation coefficient

-0.23- = -after adjusting the effect of age
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Multivariate # Multivariable (Multiple)

Am J Public Health. 2013 January; 103(1): 39-40. PMCID: PMC3518362
Published online 2013 January. doi: 10.2103/AJPH.2012.300897 NIHMSID: NIHMS514677

Multivariate or Multivariable Regression?

Bertha Hidalgo, PhD, MPHE and Melody Goodman, PhD, MS

1 Author information = Article notes » Copyright and License information

See |etter "Hidalgo and Goodman Respond” in volume 10 on page ef.

This arficle has been cited by other articles in PMC.

- Abstract Go to: (V]

The terms multivariate and multivariable are often used interchangeably in the public health literature.
However, these terms actually represent 2 very distinct types of analyses. We define the 2 types of analysis

and assess the prevalence of use of the statistical term multivariate in a 1-year span of articles published in
the American Journal of Public Health. Our goal 1s to make a clear distinction and to identify the nuances
that make these types of analyses so distinct from one another.




I
Multivariable (Multiple) analysis

A multivariable model can be thought of as a model in which multiple variables are found on the right side
of the model equation. This type of statistical model can be used to attempt to assess the relationship

between a number of variables; one can assess independent relationships while adjusting for potential
confounders.

This is the model to control the

effects of confounders!

By contrast, a multivariable or multiple linear regression model would take the form

By=a+xp +xp,+...+xp +¢

where y 1s a continuous dependent variable, x is a single predictor in the simple regression model, and x;,
X3, ..., X3 are the predictors in the multivariable model.

As 15 the case with linear models, logistic and proportional hazards regression models can be simple or
multivariable. Each of these model structures has a single outcome variable and 1 or more independent or

predictor variables.
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Multivariate analysis

Multivariate, by contrast, refers to the modeling of data that are often derived from longitudinal studies.
wherein an outcome 1s measured for the same individual at multiple time points (repeated measures), or the
modeling of nested/clustered data, wherein there are multiple individuals m each cluster. A multivariate
linear regression model would have the form

{3) Ynx:ﬂ' - xnxl’l-:-i-l} Bfk"'”"F TE

where the relationships between multiple dependent variables (1.¢., ¥s}—measures of multiple
outcomes—and a single set of predictor variables (1.e.. X5) are assessed.




LOGISTIC REGRESSION
ANALYSIS
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Logistic regression analysis

m Logistic regression is used to model the
probability of a binary response as a
function of a set of variables thought to
possibly affect the response (called
covariates).

-1: case (with the disease)

Y =

-0: control (no disease)



"
One could imagine trying to fit a linear model
(since this is the simplest model !) for the
probabilities, but often this leads to

problems:
1.6

1.4

1.2

1 i

Probability 0.8
0.6

0.4

0.2

0

logistic model

1O|20I30I4O|

In a linear model, fitted probabilities can fall outside
of 0 to 1. Because of this, linear models are seldom
used to fit probabilities.




In a logistic regression analysis, the logit of
the probability is modeled, rather than the
probability itself.

P = probability of getting disease (0~1)

logit (p) = log

— p —

_ 1-p _

This transformation
allows us to use a linear
model.

As always, we use the natural log.
The logit is therefore the log odds, since odds =p / (1-p)
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Logistic regression model

Now, we have the same function with linear
regression model in the right side.

—_— —

PX
logit (px) = log =o+ X
1-px_
where px = probability of event for a given value X,

and o and 3 are unknown parameters to be
estimated from the data.

— Multivariable analysis is applicable to adjust
the effect of confounding factor.
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Interpretation of coefficients of logistic
regression model

The explanatory variable is binomial one:
1=exposed or 0=unexposed

Exposed: log (Oe) =a + B(Exp=1)=a +
Unexposed: log (Ou) = a + B(Exp=0) = a
Difference: log(Oe) — log (Ou) =

Odds ratio: Oe / Ou=¢e P

m Coefficient estimate: Odds ratio (after
exponentiating)



SURVIVAL ANALYSIS
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Survival analysis

m Survival time: from the entry point(for
example, when the treatment starts) until
end point(for example, disease recurrence
or the death from the disease)

m Censoring: the follow-up is stopped
because of other reason (for example,
study period is over or the death from
other reason)



Observation period Person-years
O 1 2 3 456 7 8 9 10
Exposed _
+ —leukemia Censored case 1 =
+ leukemia 2 =
+ gone abroad 4 =8
+ leukemia 3 'S
+ alive 10 =
e
incidence = N of new leukemia cases / PYs = 3/20 o
Un-exposed _ |
- # by accident B 1
- leukemia 14
- leukemia 9
- alive 10
X leukemia 8

incidence = N of new leukemia cases / PYs = 3/40



N

Kaplan-Meier survival estimate

5 10
analysis time

o_

. 95%Cl

Survivor function




.75

.25

Log-rank test:

Statistic test for the difference of survival probability

Kaplan-Meier survival estimates

T T
0 5
analysis time

95% Cl
a

95% ClI

I
10

The statistic
follows the
chi-square
distribution
(df=1)

P=0.016



Limitations of Kaplan-Meier method

e Mainly descriptive
e Doesn’t control for covariates
e Requires categorical predictors

e Can’'t accommodate time-dependent
variables
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Cox proportional hazard model

This model is expressed by the following

formula; A(r|x,.....x,)= A, (t)exp(B, + Bx, ++--+ B.x,)
where A(t) is the hazard of variable xx and t is
the time until the case is alive, and 4,(t) is the

baseline hazard. We assume that the log of

hazard ratio is proportional to the variable X.
Log negative-log plot is

useful to check
Hazard ratio: 11(t)/4, (t)=exp(B)

Exposed group Un-exposed group
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Log of Negative Log of Estimated Survivor Functions

. =2
§
g
il
LR
g
g
-~ )
r
E i
WA ¥
1 2 3 4 =

leg{Time from basaline till Event ocourm)
activity —&— average — —+—- high — x— oW

Logi-Logl Sureivalil

(%]

-10 05 o

-1.56

210

i
= gcahiml s
e AP -
i
r.ll.l'
|
r
i
goamazd
i
i
|
posee=s i
|
|l'|-l'|I
i
;
.la.la.l' T
|
______ 1
|
|
|
|
|
[P —— -
T T T T
1 2 ] 0 20




Group A=1, Group B=0

Number of obs = 22
LR chi2(1) = 4.68
Prob > chi2 = 0.0305

No. of subjects = 22
No. of failures = 15
Time atrisk = 77
Log likelihood = -35.943457
_t| Haz. Ratio Std.Err. z
T ——— L . — —
A | 0.29 0.1767 -2.04

P>[z|] [95% Conf. Interval]

0.0895 0.9557

Kaplan-Meier survival estimates
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R
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analysis time
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STRATEGY FOR CONSTRUCTING
REGRESSION MODELS
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Basic principles

1. Stratified analysis should be first.

2. Determine which confounders to *
include in the model.

3. Estimate the shape of the exposure-
disease relation.

Dose-response relation
4. Evaluate interaction
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How to determine confounders: e
data-dependent manner

1. Start with a set of predictors of outcome
based on the strength of their relation to
the outcome.

2. Build a model by introducing predictor
variables one at a time: check the amount
of change in the coefficient of the
exposure term

> 10% change: include it as a confounder




Example of a confounder (age)

Ability of maths (AM) = o + B1(Height)
— AM = -42.8 + 0.41 Height)

> 10% change
AM = o + B1(Height) +32(Age)
— AM = 1.48 - 0.01(Height) + 2.02 (Age)
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How to determine confounders: *
data-independent manner

Some researchers argue that

“Without data analysis, decide
confounders, important risk factors of
the outcome, based on the previous
studies.”

If there are few studies, how can we know

How can we pick-up “important risk factors”? S
confounders? 2
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How many explanatory variables can we
use in a model?

Linear regression Sample size / 15 Up to around 6-7

model variables in 100
subjects
Logistic regression Smaller sample Up to 10 variables if
model size of outcome / the numbers of
10 cases and controls

are 100 and 300,
respectively.

Cox proportional The number of Up to 9 variables if
hazard model event/ 10 you have 90 events
out of 150 subjects
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ATTENTION!

m \When you include a categorical variable
in your model, you have to count that as
“the number of categories — 1°.

For example, the variable of age group used in
the previous practice, we have to count it as
“two” (=3 categories -1) variables.



PROPENSITY SCORE
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If you cannot recruit enough
sample size

m Calculate “propensity score” which can be
used for adjustment of confounding effects.

Aspirin Use and All-Cause Mortality
Among Patients Being Evaluated for Known

or Suspected Coronary Artery Disease
A Propensity Analysi

Yok oy 1 '
Patricia A. Gum, MDD Context Although aspirin has been shown to reduce cardiovascular morbidity and

Maran Thamilarasan, MD short-term mortality following acute myocardial infarction, the association between
Junko Watanabe. MD its use and long-term all-cause mortality has not been well defined.

Eurene H. Blackstone. MD Objectives To determine whether aspirin is associated with a mortality benefit in
ug M— i stable patients with known or suspected coronary disease and to identify patient char-
Michael S. Lauer, MD acteristics that predict the maximum absolute mortality benefit from aspirin.




Table 1. Baseline and Exercise Characteristics According to Aspirin Use*

Aspinn As-':n?rin P
Vanable (n = 2310) (n = 3864) Value
Demographecs CE—
Age, mean (S0O), y 62 (11) 56 (12) =2 001
Men, No. (36) _ 2167 (56) = 001
CIIHE?E!E%?ND. () AI mOSt a” prOgnOStIC 432 1(17) =2 00
Hypertension, Mo. (%) ( — ) 1569 (41) =2 001
Tobacco use, No. (35) faCtorS n 28 are 500 (13) 001
o ooy ey F@lated to aspirin use! o oo
Prior coronary artery by, . . f\z\\':\'I\ == 001
Pnor percutanecus coronary miervention, No. (9¢) 667 (29) 148 IIE!'\ =2 001
Prior Q-wawve M, No. (36) 369 [16) 285 (7) S 1 =001
Adrial fibnllation, No. (55) 27 (1) 55 (1) 04
Congestive heart failure, Mo. (3) 127 (6) 178 (5) 1z
Medicaton use
Chgoxin use, No. (35) 171 (7) 216 (B) 004
B-Blocker use., No. (9G) 811 (35) 550 (14) =2 001
Ciltizzemiverapamil use, No. (35) 452 (20) 405 (1) =2 001
Mifedipine use, No. (%) 261 (11) 283 (7) =2 001
Lipid-lowering therapy. No. (96) 775 (34) 380 (10) <2001
ACE inhibitor use, No. (%6) 349 (15) 4417 (17) =2 001
Cardiovascular assessment and exercise capacity
Body mass index. mean (3D0). kg/m® 29 (5) 30(7) =2 001
Epection fracbon, mean (SD). % 50 (9) 53 (7 =2 001
Resting heart rate, mean (S0), beats/mmn 74 (13) 79 (14) <= 00

|- PRSP S-S I PRSI N R S ——— | e [ | P



Table 3. Selected B&SE‘“I‘IE &nd ExercIEE Chﬂr&EtE-HS’[IES Accordl

Use In Propensity "

After matching by propensity score, the
distribution of prognostic factors are similar
between aspirin users and non-users.

e

L It is just like a RCT! J

(pseud RCT) (= 531) {nﬂﬁ:ﬂ} Value
Demographics
Age, mean (S0), y 60 (11) 61 (17) 16
Men, No. (%) 951 (70) 974 (72) 33
Chrcal history
Diabetes, No. (%) 203 (15) 207 (15) 83
Hypertension, No. (%) 679 (50) R98 (52) A5
Tobacco use, No. (%) 161 (12) 162 (12) 95
Cardiac vanables
Pnor coronary artery disease, No. (%) 652 (48) 659 (49) 79
Prnor coronary artery bypass graft, No. (%) 251 (19) 235 (17) 42
Prnor percutanecus coronary ntervention, No. (%) 166 (12) 147 (17) 25
Prior Q-wave M1, No. (36) 194 (14) 206 (15) 52
Atrial fibrllation, No. (%) 21 (2] 24 (2) 65
Congestve heart failure, No. (%) 79 (6 a9 (7) 43
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Table 4. Cox Proportional Hazards Analyses B

of Aspirin Use and Mortality Among _YOU need to

Propensity-Matched Patients (n = 2702)" include only
Hazard propensity score In
Ratio P the model.

Model 95% Cl)  Value

Unadjusted 0.53 (0.38-0.74 .002
Adjusted for propensity 0.53 (0.38-0.74) <.001
Adjusted for propensity 0.59 (0.42-0.83) .002
and selected
variablest
Adjusted for propensity 0.56 (0.40-0.78) <.001
and all covariatest

*Clindicates confidence interval.

tSelected variables induded prior coronary artery disease,
prior coronary artery bypass grafting, prior percutane-
ous intervention, and ejection fraction =40%.

fFor alist of covariates, see Table 2 footnote (1).




WE SHOULD NOT RELY ON
P VALUE TO0O MUCH



Statistic significance vs. Clinical significance

Statistic significance # Clinical significance

m P value(s) do NOT tell us the significance
in clinical practice / biological importance.

m |[f your sample size is quite large, you may
obtain a result with statistic significance.
So what?



RCT of donepezil for Alzheimer’ s disease

Lancet 2004 Jun 26363{9427):2105-15.
Long-term donepezil treatment in 565 patients with Alzheimer's disease (AD2000): randomised double-blind trial.

CDUFITIE' Tl Eorrall T i Traas T Bolle T Lumeh | Salbauoed B Edueardes S Hardumman WA Daftom: | T romne 0| cmdom 7 S o I__| Eentham P: ADEGDD CD”ahDrati'\"E
G ) algm .
— . Cognition averaged 0.8 MMSE points better

soerrae (99%C1 0.5-1.2; p<0.0001) and functionality
cmemn 1.0 BADLS points (0.5-1.6; p<0.0001) with 5 simees tearee

psycholo . . 97

METHOI donepeZII Over the fl rSt 2 years 2riod in which they were randomly
allocated donepezil (5 mg/ -0 completed this period were rerandomised to either donepezil (5 or 10 mg/day) or placebo, with
double-blind treatment cg T ) T D T ’ ) ' A
setnedby ossof ether |2 [J)onepezil is not cost effective, with benefits
assessments were soug ~all patier

FINDINGS; coanition averaged 02 11 D@lOW Miinimally relevant thresholds. More

points better (0.5-1.6; p<0.0001) with d

nstutonaiisation (42% vs 44% at 3 ye @ff@Ctive treatments than cholinesterase onal

care in the donepezil group compared |

institutional care was 0.96 (95% C1 0.7, ||} h | b|to S are need ed for AD . 1l

and psychological symptoms, carer psy ) mg
donepezil.

INTERPRETATION: DOI’IEEEE" is not cost EﬁEEt-i'l."E'. witi Denefits below minimally relevant thresholds. More effective treatments than cholinesterase

inhibitors are needed for Alzheimer's disease.

= =
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Which description is appropriate?

m In a RCT study, the mortality rates of new
drug A and old drug B were 30% and 20%,

respectively. And, the p value was 0.6 for the
difference of them.

1. The mortality rate of drug A is equivalent to
that of drug B.

2. We cannot say “there is a difference in the
mortality between drug A and B".

3. We cannot say “the mortality of drug A is
higher than that of drug B”.




We cannot tell the equivalence by p value

m In the previous example, the sample size of
each arm was 10.

m The result tells us “you failed to reject the null
hypothesis because of small sample size”.

293 subjects for each arm are required.

m The difference of mortality rate is 10% and its
95% Cl is -30%, 50%.



" A
American Statistical Association Releases Statement on
Statistical Significance and P-values

Provides Principles to Improve the Conduct and Interpretation of
Quantitative Science
https://www.amstat.org/newsroom/pressreleases/P-ValueStatement.pdf

1. P-values can indicate how incompatible the data are with a
specified statistical model.

2. P-values do not measure the probability that the studied
hypothesis is true, or the probability that the data were produced
by random chance alone.

3. Scientific conclusions and business or policy decisions should
not be based only on whether a p-value passes a specific
threshold.

4. Proper inference requires full reporting and transparency.

5. A p-value, or statistical significance, does not measure the size of
an effect or the importance of a result.

6. By itself, a p-value does not provide a good measure of evidence
regarding a model or hypothesis.



